RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. POMI, 2013 Volume 415, Pages 62–74 (Mi znsl5686)

This article is cited in 4 papers

Groups acting on dendrons

A. V. Malyutin

St. Petersburg Department of Steklov Institute of Mathematics of the Russian Academy of Sciences, St. Petersburg, Russia

Abstract: A dendron is a continuum (a non-empty connected compact Hausdorff space) in which every two distinct points have a separation point. We prove that if a group $G$ acts on a dendron $D$ by homeomorphisms, then either $D$ contains a $G$-invariant subset consisting of one or two points, or $G$ contains a free non-commutative subgroup and, furthermore, the action is strongly proximal.

Key words and phrases: dendron, dendrite, tree, $\mathbb R$-tree, pretree, dendritic space, amenability, invariant measure, von Neumann conjecture, Tits alternative, free non-Abelian subgroup, strong proximality.

UDC: 512.54+515.12

Received: 06.05.2013


 English version:
Journal of Mathematical Sciences (New York), 2016, 212:5, 558–565

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025