RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. POMI, 2013 Volume 415, Pages 163–193 (Mi znsl5693)

Atiyah–Patodi–Singer $\eta$-invariant and invariants of finite degree

A. N. Trefilov

St. Petersburg State University, St. Petersburg, Russia

Abstract: We consider the problem of computing the degree of invariants of the form $\eta\bmod A$, where $\eta$ is the Atiyah–Patodi–Singer invariant considered on smooth compact oriented three-dimensional submanifolds of $\mathbb R^n$ and $A$ is an additive subgroup of $\mathbb R$. We use the functional definition of invariants of finite degree. (A similar approach is used in the paper “Quadratic property of the rational semicharacteristic” by S. S. Podkorytov.) The main results are as follows. If $1\notin A$, the degree is infinite. If $\frac13\in A$, the degree equals one.

Key words and phrases: Atiyah–Patodi–Singer $\eta$-invariant, invariants of finite degree.

UDC: 514.76

Received: 05.03.2013


 English version:
Journal of Mathematical Sciences (New York), 2016, 212:5, 622–642

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025