RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. POMI, 2013 Volume 416, Pages 98–107 (Mi znsl5696)

This article is cited in 2 papers

Entire functions that have the smallest deviation from zero with respect to the uniform norm with weight

A. V. Gladkaya

St. Petersburg State University, St. Petersburg, Russia

Abstract: P. L. Chebyshev solved the problem of finding a polynomial of degree $n$ with leading coefficient one that has the smallest deviation from zero with respect to the maximum norm. A similar problem can be solved for some classes of entire functions. We find the entire function of exponential type $\sigma$ such that for any nonzero entire function $Q$ of type less than $\sigma$ and of class $A$ we have
$$ \sup_\mathbb R\left|\frac{f_\sigma-Q}{\rho_m}\right|>\sup_\mathbb R\left|\frac{f_\sigma}{\rho_m}\right|. $$


Key words and phrases: entire function, the least deviation from zero.

UDC: 517.5

Received: 14.03.2013


 English version:
Journal of Mathematical Sciences (New York), 2014, 202:4, 546–552

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024