RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. POMI, 2013 Volume 416, Pages 117–123 (Mi znsl5698)

Littlewood–Paley–Rubio de Francia inequality in Morrey–Campanato spaces: an announcement

N. N. Osipov

St. Petersburg Department of Steklov Institute of Mathematics of the Russian Academy of Sciences, St. Petersburg, Russia

Abstract: A one-sided Littlewood–Paley-type $L^p$-inequality, $2\leq p<\infty$, for arbitrary intervals was proved in 1983 by Rubio de Francia. By a refinement of his methods, it is possible to prove an analog of this inequality for “exponents beyond infinity”, i.e., for BMO and Hölder classes.

Key words and phrases: Littlewood–Paley inequality, Hölder spaces, Morrey–Campanato spaces.

UDC: 517.443+517.982.27

Received: 07.07.2013


 English version:
Journal of Mathematical Sciences (New York), 2014, 202:4, 560–564

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025