RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. POMI, 2013 Volume 416, Pages 188–201 (Mi znsl5702)

A series of operators in $L^2(\mathbb C)$ proportional to unitary ones

N. A. Shirokov

St. Petersburg State University, St. Petersburg, Russia

Abstract: We prove that singular integral operators in $L^2(\mathbb C)$ defined by the formula
$$ Tf(z)=\int_\mathbb C\frac{(w(z)-w(\xi))^n}{(z-\xi)^{n+2}}f(\xi)\,dm_2(\xi), $$
where $|w(z)-w(\xi)|\leq c|z-\xi|$, $z,\xi\in\mathbb C,$ are proportional to unitary ones if and only if $w(z)=az$ or $w(z)= b\overline z$.

Key words and phrases: Calderon's operators, singular integrals, unitary operators.

UDC: 517.518.13

Received: 06.05.2013


 English version:
Journal of Mathematical Sciences (New York), 2014, 202:4, 613–622

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025