RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. POMI, 2013 Volume 420, Pages 50–69 (Mi znsl5726)

This article is cited in 13 papers

Estimates for the concentration functions in the Littlewood–Offord problem

Yu. S. Eliseevaa, F. Götzeb, A. Yu. Zaitsevac

a St. Petersburg State University, St. Petersburg, Russia
b Fakultät für Mathematik, Universität Bielefeld, Postfach 100131, D-33501 Bielefeld, Germany
c St. Petersburg Department of V. A. Steklov Institute of Mathematics of the Russian Academy of Sciences, St. Petersburg, Russia

Abstract: Let $X,X_1,\ldots,X_n$ be independent identically distributed random variables. In this paper we study the behavior of the concentration functions of the weighted sums $\sum_{k=1}^na_kX_k$ with respect to the arithmetic structure of coefficients $a_k$. Such concentration results recently became important in connection with investigations about singular values of random matrices. In this paper we formulate and prove some refinements of a result of Vershynin (2011).

Key words and phrases: concentration functions, inequalities, the Littlewood–Offord problem, sums of independent random variables.

UDC: 519

Received: 29.10.2013


 English version:
Journal of Mathematical Sciences (New York), 2015, 206:2, 146–158

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024