RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. POMI, 2013 Volume 420, Pages 88–102 (Mi znsl5728)

This article is cited in 16 papers

A limit theorem on convergence of random walk functionals to a solution of the Cauchy problem for the equation $\frac{\partial u}{\partial t}=\frac{\sigma^2}2\,\Delta u$ with complex $\sigma$

I. A. Ibragimovab, N. V. Smorodinac, M. M. Faddeevc

a St. Petersburg Department of V. A. Steklov Institute of Mathematics of the Russian Academy of Sciences, St. Petersburg, Russia
b St. Petersburg State University, Department of Mathematics and Mechanics, St. Petersburg, Russia
c St. Petersburg State University, St. Petersburg, Russia

Abstract: The paper is devoted to some problems associated with a probabilistic representation and a probabilistic approximation of the Cauchy problem solution for the family of equations $\frac{\partial u}{\partial t}=\frac{\sigma^2}2\,\Delta u$ with a complex parameter $\sigma$ such that $\mathrm{Re}\,\sigma^2\geqslant0$. The above family includes as a particular case both the heat equation (when $\mathrm{Im}\,\sigma=0$) and the Schrödinger equation (when $\mathrm{Re}\,\sigma^2=0$).

Key words and phrases: limit theorem, Schrödinger equation, Feynman measure, random walk, evolution equation.

UDC: 519.2

Received: 30.09.2013


 English version:
Journal of Mathematical Sciences (New York), 2015, 206:2, 171–180

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024