RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. POMI, 1997 Volume 247, Pages 242–267 (Mi znsl574)

This article is cited in 7 papers

Uniqueness theorems for analytic vector-valued functions

E. Fricain

Universite Bordeaux 1, Laboratoire Bordelais de Recherche en Informatique

Abstract: Using the Berezin transformation, we give a multidimensional analog of a uniqueness theorem of N.Nikolski concerning distance functions and subspaces of a Hilbert space of analytic functions. Then, we establish some uniqueness properties drawing connections between two analytic $X$-valued functions $F$ and $G$ that satisfy $\|F(z)\|\equiv\|G(z)\|,\,\forall z\in\Omega$, where $X$ is a Banach space and $\Omega$ a connected domain in $\mathbb C^n$. The particular case where $X=\ell_n^p$ and $\Omega=\mathbb D=\{z\in\mathbb C\,:\,|z|<1\,\}$ will lead us to the notion of flexible and inflexible functions. We give a complete description of these functions when $p=+\infty,\,n\in\mathbb N^*$ and when $n=2,\,1\le p\le+\infty$.

UDC: 517.5

Received: 01.11.1996

Language: English


 English version:
Journal of Mathematical Sciences (New York), 2000, 101:3, 3193–3210

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024