RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. POMI, 2014 Volume 421, Pages 68–80 (Mi znsl5750)

This article is cited in 3 papers

Describing orbit space of global unitary actions for mixed qudit states

V. P. Gerdta, A. M. Khvedelidzebac, Yu. G. Paliida

a Laboratory of Information Technologies, Joint Institute for Nuclear Research, Dubna, Russia
b Tbilisi State University, A. Razmadze Mathematical Institute, Tbilisi, Georgia
c School of Natural Sciences, University of Georgia, Tbilisi, Georgia
d Institute of Applied Physics, Moldova Academy of Sciences, Chisinau, Republic of Moldova

Abstract: The unitary $\mathrm U(d)$-equivalence relation between elements of the space $\mathfrak P_+$ of mixed states of $d$-dimensional quantum system defines the orbit space $\mathfrak P_+/\mathrm U(d)$ and provides its description in terms the ring $\mathbb R[\mathfrak P_+]^{\mathrm U(d)}$ of $\mathrm U(d)$-invariant polynomials. We prove that the semi-algebraic structure of $\mathfrak P_+/\mathrm U(d)$ is determined completely by two basic properties of density matrices, their semi-positivity and Hermicity. Particularly, it is shown that the Processi–Schwarz inequalities in elements of integrity basis for $\mathbb R[\mathfrak P_+]^{\mathrm U(d)}$ defining the orbit space, are identically satisfied for all elements of $\mathfrak P_+$.

Key words and phrases: density matrix, qudit, unitary group, orbit space, polynomial invariants, syzygy ideal, semialgebraic structure.

UDC: 512.81+530.145

Received: 12.11.2013

Language: English


 English version:
Journal of Mathematical Sciences (New York), 2014, 200:6, 682–689

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024