RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. POMI, 2014 Volume 421, Pages 133–137 (Mi znsl5755)

This article is cited in 1 paper

On modular computation of Gröbner bases with integer coefficients

S. Yu. Orevkovab

a Steklov Mathematical Institute of the Russian Academy of Sciences, Moscow, Russia
b Université Paul Sabatier, Toulouse, France

Abstract: Let $I_1\subset I_2\subset\dots$ be an increasing sequence of ideals of the ring $\mathbb Z[X]$, $X=(x_1,\dots,x_n)$ and let $I$ be their union. We propose an algorithm to compute the Gröbner base of $I$ under the assumption that the Gröbner bases of the ideal $\mathbb QI$ of the ring $\mathbb Q[X]$ and the the ideals $I\otimes(\mathbb Z/m\mathbb Z)$ of the rings $(\mathbb Z/m\mathbb Z)[X]$ are known.
Such an algorithmic problem arises, for example, in the construction of Markov and semi-Markov traces on cubic Hecke algebras.

Key words and phrases: Gröbner base, modular computation.

UDC: 512.71

Received: 18.11.2013


 English version:
Journal of Mathematical Sciences (New York), 2014, 200:6, 722–724

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025