RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. POMI, 1992 Volume 203, Pages 113–136 (Mi znsl5776)

This article is cited in 1 paper

On the Holmgren–John uniqueness theorem for the wave equation with piecewise analytic coefficients

Ya. V. Kurylev


Abstract: In this paper a uniqueness theorem is proved for the wave equation in the domain $Q^{2T}=\Omega\times(0,2T)$, where $\Omega$ is a piecewise analytic Riemannian manifold (Riemannian polyhedron). Initial data are assumed to be given on a part $\Gamma_0\times(0,2T)$ of the space-time boundary of the cylinder $Q^{2T}$, $\Gamma_0\in\partial\Omega$. The uniqueness of a weak solution is proved “in the large”, in a domain formed by the corresponding characteristics of the wave equation.

UDC: 517.946


 English version:
Journal of Mathematical Sciences, 1996, 79:4, 1231–1246

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024