RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. POMI, 1997 Volume 249, Pages 20–39 (Mi znsl578)

This article is cited in 8 papers

On the partial regularity up to the boundary of weak solutions to quasilinear parabolic systems with quadratic growth

A. A. Arkhipova

Saint-Petersburg State University

Abstract: We consider quasilinear nondiagonal parabolic systems with quadratic growth on the gradient in a parabolic cylinder $Q$. Under Dirichlet and Neumann boundary conditions partial Hölder continuity up to the lateral surface of $Q$ of solutions $u\in W_2^{1,1} (Q)\cap L^\infty(Q)$ is proved. Hausdorff dimension of a singular set is estimated. In the proof we get of the maximum principle theorem for corresponding model linear problems.

UDC: 517.9

Received: 05.05.1997

Language: English


 English version:
Journal of Mathematical Sciences (New York), 2000, 101:5, 3385–3397

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024