This article is cited in
4 papers
The class numbers of real quadratic fields of discriminant $4p$
E. P. Golubeva
Abstract:
For
$p$ prime,
$p=3\,(\operatorname{mod}4)$, we study the expansion of
$\sqrt p$ into a continued fraction. In particular, we show that in the expansion
$$
\sqrt p=[n,\overline{l_1,\dots,l_L,l,l_L,\dots,l_1,2n}]
$$
$l_1,\dots,l_L$ satisfy at least
$L/2$ linear relations. We also obtain a new lower bound for the fundamental unit
$\varepsilon_p$ of the field
$\mathbb Q(\sqrt p)$ for almost all
$p$ under consideration:
$\varepsilon_p>p^3/\log^{1+\delta}p$ for all
$p\ge x$ with
$O(x/\log^{1+\delta}x)$ possible exceptions (here
$\delta>0$ is an arbitrary constant), and an estimate for the mean value of the class number of
$\mathbb Q(\sqrt p)$ with respect to averaging over
$\varepsilon_p$:
$$
\sum_{p\equiv3\,(\operatorname{mod}4),\ \varepsilon_p\le x}h(p)=O(x).
$$
Bibliography: 11 titles.
UDC:
511.622