RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. POMI, 1993 Volume 204, Pages 37–54 (Mi znsl5782)

This article is cited in 2 papers

Behavior of the $L$-functions of cusp forms at $s=1$

E. P. Golubeva, O. M. Fomenko


Abstract: Let $f(z)$ be a Hecke eigenform in the space $S_{2k}(\Gamma)$ of holomorphic $\Gamma$-cusp forms of even weight $2k$, $\Gamma=\mathrm{SL}(2,\mathbb Z)$; let $L_f(s)$ be the $L$-function of $f(z)$. The goal of this paper is to obtain some results on $L_f(1)$ as $k$ increases. In particular, we prove an analogue of the classical Landau theorem in the theory of Dirichlet $L$-functions and (under a very plausible hypothesis) an analogue of the famous Siegel theorem. Bibliography: 15 titles.

UDC: 511.466


 English version:
Journal of Mathematical Sciences, 1996, 79:5, 1293–1303

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024