RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. POMI, 1993 Volume 204, Pages 82–89 (Mi znsl5785)

This article is cited in 2 papers

Fundamental rectangles of admissible lattices

Kh. Kh. Ruzimuradov


Abstract: Let $\Lambda$ be a unimodular lattice in $\mathbb R^2$, $\mu$ a homogeneous minimum of $\Lambda$; let $P(a,b)\subset\mathbb R^2$ be a rectangle with vertices at the points $(a,0),\dots,(0,b)$, $P(a,b)+X$ its image under the translation by a vector $X\in\mathbb R^2$. We prove that there exists a sequence of positive numbers $v_1<v_2<\dots<v_k<\dots$ with $2\sqrt2\mu^{-2}v_{k-1}>v_k$, such that for $u>\mu$ the rectangle $P(u,v_k)+X$ contains $T=S(P)+R$ points of $\Lambda$, where $|R|<5$; here $S(P)$ is the area of the rectangle. Bibliography: 4 titles.

UDC: 511.9


 English version:
Journal of Mathematical Sciences, 1996, 79:5, 1320–1324

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025