RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. POMI, 1993 Volume 204, Pages 143–166 (Mi znsl5789)

This article is cited in 1 paper

Applications of the Petersson formula for a bilinear form in Fourier coefficients of cusp forms

O. M. Fomenko


Abstract: Let $S_{2k}(\Gamma_0(N),\chi)$ be the space of holomorphic $\Gamma_0(N)$-cusp forms of integral weight $k$ and character $\chi$. Let $f_j(z)$, $1\le j\le v_{2k}^\mathrm{new}(p)$, be the set of normalized newforms of $S_{2k}(\Gamma_0(p),1)$, where $p$ is a prime, and let $L_j(s)=L_{f_j}(s)$ be the $L$-function of $f_j(z)$. It is proved that
$$ \sum_{1\le j\le v_{2k}^\mathrm{new}(p)}L_j^2\left(\frac12\right)\ll p\log^4p\cdot\log\log p,\qquad p\to\infty, $$
where $2k\ge4$. Errors in an earlier paper (RŽMat, 1989, 4A65) are corrected. Bibliography: 11 titles.

UDC: 511.466+517.863


 English version:
Journal of Mathematical Sciences, 1996, 79:5, 1359–1372

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024