RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. POMI, 1993 Volume 206, Pages 15–32 (Mi znsl5803)

This article is cited in 5 papers

Estimations of norms of powers of functions in certain Banach spaces

M. Yu. Blyudze, S. M. Shimorin


Abstract: Asymptotic estimates of norms of powers of analytic functions in certain Banach spaces are obtained. For a function $\varphi$ analytic in the closed unit disc and such that $\sup|\varphi(z)|=1$, it is shown that there exist constants $C,c$ and $\alpha$ depending on $\varphi$ and the Banach space $X$ such that for every $n$
$$ cn^\alpha\le\|\varphi^n\|_X\le Cn^\alpha. $$
The cases in which $X$ is the space $l^p_A$ or the Besov space are considered. Bibliography: 4 titles.

UDC: 517.982


 English version:
Journal of Mathematical Sciences, 1996, 80:4, 1880–1891

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025