RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. POMI, 1993 Volume 207, Pages 5–12 (Mi znsl5815)

An application of the Neyman–Oearson lemma to Gaussian processes

N. K. Bakirov


Abstract: Let $\xi(t)$, $i=1,2$, $t\in[0,1]$, be Gaussian zero mean processes with continuous sample paths. Bounds for the probabilities
$$ \beta_i=\mathsf P\{\xi_i(t)-a_i(t)\in B\},\qquad i=1,2, $$
are given, where $a_i\in C[0,1]$ and $B$ is a Borel subset of $C[0,1]$. Bibliography: 5 titles.

UDC: 519.2


 English version:
Journal of Mathematical Sciences, 1996, 81:1, 2357–2362

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025