RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. POMI, 1994 Volume 209, Pages 60–101 (Mi znsl5845)

This article is cited in 8 papers

Scaling limits in the second Painlevé transcendent

A. A. Kapaev

State Academy of Aerospace Equipment Construction

Abstract: By the isomonodromy deformation method, scaling limits in the second Painlevé equation $y_{xx}=2y^3+xy-\alpha$ depending on a complex parameter to and yielding formally equations for an elliptical sine and its degenerations are studied. Results contain the description of discriminant curves on the parameter $t_0$ plane, the proof of the solvability for the system of transcendent equations for an invariant $a_0(t_0)$ for the elliptical asymptotics of the Painlevé transcendent and the description of the main asymptotic terms of the second Painlevé transcendent as $\operatorname{Re}\alpha\to\infty$ for any to with the corresponding connection formulae together in the case of general position. Bibliography: 23 titles.

UDC: 517.9

Received: 25.07.1993


 English version:
Journal of Mathematical Sciences, 1997, 83:1, 38–61

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024