The uniqueness of the Cauchy problem solution for the Maxwell equations, when the initial data are fixed on a time-like surface
V. M. Babich St. Petersburg Department of V. A. Steklov Institute of Mathematics of the Russian Academy of Sciences
Abstract:
The uniqueness theorem for the Canchy problem
$$
\begin{gathered}
\frac\mu c\,\frac{\partial\overrightarrow H}{\partial t}=-\operatorname{rot}\overrightarrow E,\ \ \operatorname{div}\mu\overrightarrow H=0,\quad \frac\varepsilon c\,\frac{\partial\overrightarrow E}{\partial t}=-\operatorname{rot}\overrightarrow H,\ \ \operatorname{div}\varepsilon\overrightarrow E=0, \quad\varepsilon>0,\ \ \mu>0,\\
\overrightarrow H|_\Sigma=0,\quad\overrightarrow E|_\Sigma=0,\qquad\Sigma=\Gamma\times[0\le t\le2T],\quad0<T<+\infty,
\end{gathered}
$$
(
$\varepsilon=\varepsilon(x)$,
$\mu=\mu(x)$ are analytical functions,
$\Gamma\subset\mathbb R^3$ – an analytical surface) is proved. Bibliography: 5 titles.
UDC:
517.945.7
Received: 22.07.1993
© , 2024