RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. POMI, 1994 Volume 210, Pages 30–37 (Mi znsl5856)

The uniqueness of the Cauchy problem solution for the Maxwell equations, when the initial data are fixed on a time-like surface

V. M. Babich

St. Petersburg Department of V. A. Steklov Institute of Mathematics of the Russian Academy of Sciences

Abstract: The uniqueness theorem for the Canchy problem
$$ \begin{gathered} \frac\mu c\,\frac{\partial\overrightarrow H}{\partial t}=-\operatorname{rot}\overrightarrow E,\ \ \operatorname{div}\mu\overrightarrow H=0,\quad \frac\varepsilon c\,\frac{\partial\overrightarrow E}{\partial t}=-\operatorname{rot}\overrightarrow H,\ \ \operatorname{div}\varepsilon\overrightarrow E=0, \quad\varepsilon>0,\ \ \mu>0,\\ \overrightarrow H|_\Sigma=0,\quad\overrightarrow E|_\Sigma=0,\qquad\Sigma=\Gamma\times[0\le t\le2T],\quad0<T<+\infty, \end{gathered} $$
($\varepsilon=\varepsilon(x)$, $\mu=\mu(x)$ are analytical functions, $\Gamma\subset\mathbb R^3$ – an analytical surface) is proved. Bibliography: 5 titles.

UDC: 517.945.7

Received: 22.07.1993


 English version:
Journal of Mathematical Sciences, 1997, 83:2, 180–184

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024