RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. POMI, 1994 Volume 210, Pages 47–56 (Mi znsl5858)

On the local coordinates on the manifold of finite-gap solutions of the KdV equation

R. F. Bikbaev

Mathematics Institute of the Bashkir Science Center, Ural Section of the Russian Academy of Sciences,Ufa

Abstract: A theorem is proved about nondegeneracy of the map
$$ (E_1<E_2<\dots<E_{2g+1})\to(V,W,c), $$
where $E_i$ are the branching points of the hyperelliptic curve $\Gamma$, which corresponds to the finite-gap solution of KdV equation $u_g(x,t)$. Here $V,W$ are frequency vectors and $c$ is the “mean value” of the potential $u_g(x,t)$. The bijectivity of this map for $g=1$ is proved. Complex generalization of the nondegeneracy result is proved. Bibliography: 11 titles.

UDC: 517.946

Received: 22.04.1993


 English version:
Journal of Mathematical Sciences, 1997, 83:2, 191–197

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024