RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. POMI, 1994 Volume 210, Pages 125–145 (Mi znsl5864)

A problem of a point source of $SH$-waves in a case of separation of the variables

S. A. Kochengin

St. Petersburg Department of V. A. Steklov Institute of Mathematics of the Russian Academy of Sciences

Abstract: The equation
$$ \operatorname{div}(\mu\nabla u)+\omega^2\rho u=-\delta(x-x_0)\delta(y-y_0), $$
where $\mu(x,y)=a(x)b(y)=a(x)b(y)(c(x)+d(y))$ ($a,b,c,d$ are given step functions) is considered. The problem is solved in explicit form and its asymptotic expansion, if $\omega\to0$, is found. Bibliography: 8 titles.

UDC: 534.2+539.3

Received: 15.03.1993


 English version:
Journal of Mathematical Sciences, 1997, 83:2, 244–258

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025