RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. POMI, 1994 Volume 211, Pages 67–79 (Mi znsl5878)

This article is cited in 1 paper

Arrangement of the subgroups that contain an unramified quadratic torus in the general linear group of degree 2 over a local number field ($p\ne2$)

A. A. Bongarenko

Saint Petersburg State University

Abstract: Let $k$ be a nondyadic local number field and let $K=k(\sqrt\omega)$ be its unramifield quadratic extension. A complete description is suggested for the intermediate subgroups of the general linear group $\mathrm{G=GL}(2,k)$ of degree 2 over the field $k$ that contain the nonsplit maximal torus $T=T(\omega)$ (i.e., the image in $\mathrm G$ of the multiplicative group $K^*$ of the field $K$ under the regular embedding). In particular, the torus $T(\omega)$ is polynormal in $\mathrm{GL}(2,k)$. Bibliography: 11 titles.

UDC: 519.46

Received: 18.06.1993


 English version:
Journal of Mathematical Sciences, 1997, 83:5, 600–608

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024