RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. POMI, 1994 Volume 211, Pages 80–90 (Mi znsl5879)

This article is cited in 2 papers

Arrangement of the subgroups that contain an unramified quadratic torus in the general linear group of degree 2 over a local number field ($p=2$)

A. A. Bongarenko

Saint Petersburg State University

Abstract: Let $k$ be a dyadic local number field and let $K=k(\sqrt d)$ be an unramified quadratic extension. A complete description is suggested for the intermediate subgroups of the general linear group $\mathrm{G=GL}(2,k)$ of degree 2 over the field $k$ that contain the nonsplit maximal torus $T=T(d)$ (i.e., the image in $\mathrm G$ of the multiplicative group $K^*$ of the field $K$ under the regular embedding). In particular, the torus $T(d)$ is polynormal in $\mathrm{GL}(2,k)$. Bibliography: 11 titles.

UDC: 519.46

Received: 24.07.1993


 English version:
Journal of Mathematical Sciences, 1997, 83:5, 609–616

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024