RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. POMI, 1994 Volume 211, Pages 161–173 (Mi znsl5889)

This article is cited in 2 papers

Spinor norms of local autometries of generalized quadratic lattices

Yu. G. Teterin

St. Petersburg Department of V. A. Steklov Institute of Mathematics of the Russian Academy of Sciences

Abstract: It is proved that the group of spinor norms of autometries of a generalized quadratic lattice $\mathcal L$ over the ring of integral elements $v_\mathfrak p$ of a local field $k_\mathfrak p$, in the case where $\mathfrak p\nmid2$ and $\mathcal L$ is a generalized translation, is generated by the spinor norms of symmetries contained in the group of autometries of $\mathcal L$. As a corollary, an extension to the case of generalized quadratic lattices is given for known sufficient conditions of coincidence of the genus and the spinor genus of a quadratic lattice. Bibliography: 9 titles.

UDC: 511

Received: 01.02.1994


 English version:
Journal of Mathematical Sciences, 1997, 83:5, 664–672

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024