RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. POMI, 1994 Volume 212, Pages 56–70 (Mi znsl5896)

This article is cited in 14 papers

Density theorems and the mean value of arithmetical functions in short intervals

V. A. Bykovskii

Institute for Applied Mathematics, Khabarovsk Division, Far-Eastern Branch of the Russian Academy of Sciences

Abstract: Let $\Gamma=SL_2(\mathbb Z)$ and let $Z_\Gamma(s)$ be the Selberg zeta function. Set
$$ \pi_\Gamma(P)=\sum_{N(\mathcal P)\le P}1, $$
where $\mathcal P$ is a primitive hyperbolic class of conjugate elements in $\Gamma$ and $N(\mathcal P)$ is the norm of P. It is shown that for $\mathcal P$. It is shown that for $P^{1/2+\theta}=Q$, $0\le\theta\le1/2$ we have
$$ \pi_\Gamma(P+Q)-\pi_\Gamma=\int_P^{P+Q}\frac{du}{\log u}+O_\varepsilon(QP^{-\sigma(\theta)+\varepsilon}), $$
where
$$ \sigma(\theta)=\frac{\theta^2}2+O(\theta^3),\qquad\theta\to0. $$
Thus, a conjecture of Iwaniec (1984) is proved. Similar asymptotic formulas are obtained for the sums
$$ \sum_{P<d\le P+Q}\frac{h(-d)}{\sqrt d}\quad{\text and}\quad\sum_{P<n\le P+Q}\frac{r_3(n)}{\sqrt n}, $$
where $h(-d),r_3(n)$ is the class number of the imaginary quadratic field of discriminant $-d<0$ and $r_3(n)$ is the number of representations of n by the sum of three squares. Bibliography: 7 titles.

UDC: 511.622

Received: 21.03.1994


 English version:
Journal of Mathematical Sciences, 1997, 83:6, 720–730

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024