RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. POMI, 1994 Volume 212, Pages 91–96 (Mi znsl5898)

The value regions of initial coefficients in a certain class of meromorphic functions

E. G. Goluzina

St. Petersburg Department of V. A. Steklov Institute of Mathematics of the Russian Academy of Sciences

Abstract: Let $M_{k,\lambda}$ ($0\le\lambda\le1$, $k\ge2$) be the class of functions
$$ f(z)=1/z+a_0+a_1z+\dots, $$
that are regular and locally univalent for $0<|z|<1$ and satisfy the condition
$$ \lim_{r\to1-}\int_0^{2\pi}|\operatorname{Re}J+\lambda(re^{i\theta})|\,d\theta\le k\pi, $$
where
$$ J_\lambda(z)=\lambda(1+zf''(z)/f'(z))+(1-\lambda)zf'(z)/f(z). $$
In the class $M_{k,\lambda}$ we consider sorne coefficient problems and problems concerning distortion theorems. Bibliography: 6 titles.

UDC: 517.54

Received: 01.03.1994


 English version:
Journal of Mathematical Sciences, 1997, 83:6, 745–749

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024