RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. POMI, 1994 Volume 212, Pages 114–128 (Mi znsl5900)

This article is cited in 1 paper

The problem of product of conformal radii of nonoverlapping domains

V. O. Kuznetsov

Saint Petersburg State University

Abstract: Let $a_1,a_2,a_3,b$ be distinct points in $\overline{\mathbb C}$ and let $\mathcal D$ be the family of all triples of nonoverlapping domains $D_1, D_2,D_3$ in $\overline{\mathbb C}\setminus b$ such that $a_k\in D_k$, $k=1,2,3$. For this family we consider the problem on the maximum of the functional $I=R_1R_2R_3$, where $R_k=R(D_k,a_k)$ is the conformal radius of $D_k$ with respect to $a_k$. Geometrical properties of the extremal triple of domains are described. We prove that the maximum of $I$ monotonically depends on the position of the point $b$ and find the maximum in some special cases. Bibliography: 10 titles.

UDC: 517.54

Received: 21.03.1994


 English version:
Journal of Mathematical Sciences, 1997, 83:6, 762–771

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025