RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. POMI, 1994 Volume 212, Pages 139–163 (Mi znsl5902)

This article is cited in 3 papers

Decompositions into nonoverlapping domains and extremal properties of univalent functions

A. Yu. Solynin

St. Petersburg Department of V. A. Steklov Institute of Mathematics of the Russian Academy of Sciences

Abstract: We apply the method of extremal metrics and certain symmetrization approaches to study problems on conformal mappings of a disk and circular annulus. For instance, we solve the problem on the maximal conformal module in the family of all doubly-connected domains of the form $\overline{\mathbb C}\setminus(E_1\cup E_2)$ with $E_1\cap E_2=\varnothing$, $r_1,r_2\in E_1$, $0\le r_1,r_2\le\infty$, and $\operatorname{diam}E_2\cap\{z\colon|z|<1\}\ge\lambda>0$. This generalizes the classical result by A. Mori. We also give a new solution of a problem by P. M. Tamrazov, which was initially solved by V. A. Shlyk. Some new theorems on the covering of a regular system of $n$ rays are obtained for certain classes of convex mappings. Bibliography: 22 titles.

UDC: 517.54

Received: 06.09.1994


 English version:
Journal of Mathematical Sciences, 1997, 83:6, 779–794

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025