RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. POMI, 1994 Volume 212, Pages 164–195 (Mi znsl5903)

This article is cited in 4 papers

Distribution of lattice points on surfaces of second order

O. M. Fomenko

St. Petersburg Department of V. A. Steklov Institute of Mathematics of the Russian Academy of Sciences

Abstract: Let $f_1(x_1,\dots,x_{l_1})$ and $f_2(y_1,\dots,y_{l_2})$ be positive definite primitive quadratic forms in $l_1$ and $l_2$ variables, respectively. We obtain new results in the well-known problem on the number of lattice points on the cone $f_1(x_1,\dots,x_{l_1})=f_2(y_1,\dots,y_{l_2})$, in the domain $f_1(x_1,\dots,x_{l_1})\le N$ for $N\to\infty$. Our technical tool is the Rankin–Selberg convolution. In several special cases the results can be sharpened by other methods. In addition, new facts concerning the uniform distribution of lattice points on ellipsoids in $l$ variables, $l$ odd, $l\ge5$ are obtained. Bibliography: 40 titles.

UDC: 511.466+517.863

Received: 14.03.1994


 English version:
Journal of Mathematical Sciences, 1997, 83:6, 795–815

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024