RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. POMI, 1994 Volume 213, Pages 75–92 (Mi znsl5908)

This article is cited in 4 papers

Local estimates of the gradients of solution to a simplest regularisation for some class of nonuniformly elliptic

O. A. Ladyzhenskayaa, N. N. Uraltsevab

a St. Petersburg Department of V. A. Steklov Institute of Mathematics of the Russian Academy of Sciences
b Saint Petersburg State University

Abstract: An estimate of $\max_{\Omega'}|u_x^\varepsilon|$, $\Omega'\subset\subset\Omega$, for solutions $u^\varepsilon$ to the family of equations
$$ -\frac d{dx_i}\,\frac{u_{x_i}}{\sqrt{1+u^2_x}}-\varepsilon\Delta u+a(x,u,u_x)=0,\qquad x\in\Omega,\quad\varepsilon\in(0,1], $$
with a non-differentiated lower term $a$ is given. A majorant in the estimate depends on $\max_{\Omega'}|u_x^\varepsilon|$ and the distance between $\Omega'$ and $\partial\Omega$, but does not depend on $\varepsilon$. The publication has relations with the work [2] and [3]. Bibliography: 4 titles.

UDC: 517.94


 English version:
Journal of Mathematical Sciences (New York), 1997, 84:1, 862–872

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024