RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. POMI, 1994 Volume 213, Pages 206–223 (Mi znsl5915)

This article is cited in 8 papers

An initial-boundary value problem with a noncoercive boundary condition in domains with edges

E. V. Frolova

St. Petersburg Electrotechnical University

Abstract: We consider an initial-boundary value problem for the second order parabolic equation in a domain with edges. We assume that on a part of the boundary an unknown function satisfies the boundary condition of the type $u_t+\vec b\cdot\nabla u=\varphi$ (where $\vec b\cdot\vec n>0$, $n$ is the external normal vector, $\varphi$ is a given function). In the case of more than one space variable the existence results of general theory of parabolic initial-boundary value problems can't be applied to problems with such a boundary condition. Unique solvability of the problem under condition is established in weighted Sobolev spaces where the weight multiplies is a certain power of a distance to the edge. Bibliography: 17 titles.

UDC: 517.9

Received: 20.11.1993


 English version:
Journal of Mathematical Sciences (New York), 1997, 84:1, 948–959

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024