RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. POMI, 1994 Volume 215, Pages 217–225 (Mi znsl5933)

This article is cited in 1 paper

An intrinsic description of functions defined on a plane convex domain and having a prescribed order approximation by algebraic polynomials

Yu. V. Netrusov

St. Petersburg Department of V. A. Steklov Institute of Mathematics of the Russian Academy of Sciences

Abstract: Let $0<\alpha$, $0<p\le\infty$, $m$ a positive integer, let $f$ a function defined on a plane convex domain $G$. Denote by $E_m(f,L_p(G))$ the best approximation of $f$ in $L_p(G)$ by algebraic polynomials of degree $m$. A description of functions $f\in L_p(G)$ such that inequalities hold
$$ E_m(f,L_p(G))\le Cm^{-\alpha},\qquad m=1,2,\dots, $$
is given. Bibliography: 7 titles.

UDC: 517.51

Received: 01.03.1994


 English version:
Journal of Mathematical Sciences (New York), 1997, 85:1, 1698–1703

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025