RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. POMI, 1994 Volume 215, Pages 246–255 (Mi znsl5935)

This article is cited in 1 paper

Smooth and convergent $\varepsilon$-approximations of the first boundary-value problem for the equations of Kelvin–Voight fluids and Oldroyd fluids

A. P. Oskolkov

St. Petersburg Department of V. A. Steklov Institute of Mathematics of the Russian Academy of Sciences

Abstract: In this paper we study the global classical solvability on the semiaxes $t\in\mathbb R^+$ of the first initial-boundary value problem for two-dimensional perturbed equations (11) and three-dimensional perturbed equations (12) and (13), and also we study the convergence for $\varepsilon\to0$ of solutions of all these perturbed problems to the classical solutions of the first boundaryvalue problem for the equations (8), (9) and (10). Bibliography: 10 titles.

UDC: 517.9

Received: 01.02.1994


 English version:
Journal of Mathematical Sciences (New York), 1997, 85:1, 1715–1721

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025