RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. POMI, 1994 Volume 217, Pages 5–15 (Mi znsl5955)

This article is cited in 2 papers

The inverse spectral problem for finite rank Hankel operators

E. V. Abakumov

St. Petersburg Department of V. A. Steklov Institute of Mathematics of the Russian Academy of Sciences

Abstract: The following theorem is proved. Let $\Lambda$ be a divisor of $n$ points of the unit disk, and let $\sigma_1,\sigma_2,\dots,\sigma_n$ be a finite sequence of non-zero complex numbers. Then there exists a Hankel operator $\Gamma$ of rank $n$ such that the divisor of the poles of its symbol is $\Lambda$ and the eigenvalues of $\Gamma$ (counted with the multiplicities) are $\sigma_1,\sigma_2,\dots,\sigma_n$. Bibliography: 11 titles.

UDC: 517.98

Received: 20.02.1994


 English version:
Journal of Mathematical Sciences (New York), 1997, 85:2, 1759–1766

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024