RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. POMI, 1994 Volume 217, Pages 16–25 (Mi znsl5956)

This article is cited in 5 papers

On a maximum principle for pseudocontinuable functions

A. B. Aleksandrov

St. Petersburg Department of V. A. Steklov Institute of Mathematics of the Russian Academy of Sciences

Abstract: Let $\theta$ be an inner function; $\alpha\in\mathbb C$, $|\alpha|=1$. Denote by $\sigma_\alpha$ the nonnegative singular measure whose Poisson integral is equal to $\operatorname{Re}\frac{\alpha+\theta}{\alpha-\theta}$. The Clark theorem allows us naturally to identity $H^2\ominus\theta H^2$ with $L^2(\sigma_\alpha)$. Let $U_\alpha$ be the unitary operator producing this identification. The main aim of this paper is to prove the following theorem.
Theorem. Let $f\in H^2\ominus\theta H^2$; $2<p\le+\infty$; $\alpha,\beta\in\mathbb C$; $|\alpha|=|\beta|=1$, $\alpha\ne\beta$. Suppose that $U_\alpha f\in L^p(\sigma_\alpha)$ and $U_\beta f\in L^p(\sigma_\beta)$. Then $f\in H^p$.
Bibliography: 11 titles.

UDC: 517.5

Received: 27.01.1994


 English version:
Journal of Mathematical Sciences (New York), 1997, 85:2, 1767–1772

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024