RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. POMI, 1994 Volume 217, Pages 74–82 (Mi znsl5961)

Nonclassical weighted norm estimates for some Calderón–Zygmund operators on the plane

P. P. Kargaev

Saint Petersburg State University

Abstract: Let $\mu$ be a Borel measure with a compact support $F\subset\mathbb C$, $\rho$ be the distance from the set $F$;
$$ A_K(f)(z)=\int_FK(\zeta,z)f(\zeta)\,dm(\zeta),\qquad z\in\mathbb C\setminus F, $$
where $K(\zeta,z)=(\zeta-z)^{-2}$ or $K(\zeta,z)=(|\zeta-z|(\zeta-z))^{-1}$ and $m$ is the Lebesque measure. Let $\psi\colon(0,+\infty)\to\mathbb R_+$ be a nondecreasing positive function, $\Phi(z)=\psi(\rho(z))\rho(z)$, $z\in\mathbb C\setminus F$.
We prove that under some additional assumptions on p, the operator $A_K$ is bounded from $L^2(\mu)$ to $L^2(\Phi m)$ if and only if
$$ \int^1_0\frac{\psi(t)}t\,dt+\int_1^{+\infty}\frac{\psi(t)}{t^2}\,dt<+\infty. $$
This means that the interference effect is not observed in such situations. Bibliography: 4 titles.

UDC: 517.5

Received: 14.02.1994


 English version:
Journal of Mathematical Sciences (New York), 1997, 85:2, 1802–1807

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024