RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. POMI, 1994 Volume 217, Pages 92–111 (Mi znsl5963)

This article is cited in 1 paper

Spectral synthesis in the Sobolev space associated with integral metric

Yu. V. Netrusov

St. Petersburg Department of V. A. Steklov Institute of Mathematics of the Russian Academy of Sciences

Abstract: The aim of this paper is to prove Theorem A.
Theorem A. Let $l\in\mathbb N$, $A\subset\mathbb R^n$. Then the following two conditions are equivalent:
1) for any $\varepsilon>0$ there exist a function $f_\varepsilon$ and an open set $G\supset A$ such that

$$ \operatorname{supp}f_\varepsilon\subset\mathbb R^n\setminus G,\qquad\|f-f_\varepsilon\|_{W^l_1}\le\varepsilon; $$

2) for any $\alpha=(\alpha_1,\dots,\alpha_n)\in\{0,1,2,\dots,\}^n$, $|\alpha|=\alpha_1+\dots+\alpha_n<l$, there exists a set $E_\alpha$ with the following properties:
a) if $n\le l-|\alpha|$ then $E_\alpha=A$;
b) if $n>l-|\alpha|$ then the Hausdorff measure of order $n-l+|\alpha|$ of set $A\setminus E_\alpha$ is equal to zero;
c) for any point $x\in E_\alpha$ the following relation holds:

$$ \lim_{a\to0}a^{-n}\int_{D(x,a)}|D^\alpha f(y)|\,dy=0, $$
where $D(x,a)$ is the ball of radius $a>0$ centered at $x\in\mathbb R^n$.
Some generalizations of this result are also proved. Bibliography: 9 titles.

UDC: 517.51

Received: 15.02.1994


 English version:
Journal of Mathematical Sciences (New York), 1997, 85:2, 1814–1826

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025