RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. POMI, 1994 Volume 217, Pages 130–143 (Mi znsl5965)

On polynomials of the best approximation in the Hausdorff metric

A. P. Petukhov

St. Petersburg Department of V. A. Steklov Institute of Mathematics of the Russian Academy of Sciences

Abstract: A definition of the Hausdorff alternance is given. In these terms we obtain a sufficient condition for an algebraic polynomial to have minimal deviation from the function $f$ in the Hausdorff $\alpha$-metric. A condition under which a polynomial $P_n$ is the unique polynomial of best approximation to a function $f$, as well as a necessary condition for $P_n$ to have minimal deviation from $f$ are established. Also, similar theorems for $2\pi$-periodic functions are stated. Bibliography: 3 titles.

UDC: 517.513

Received: 20.02.1994


 English version:
Journal of Mathematical Sciences (New York), 1997, 85:2, 1839–1848

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025