RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. POMI, 1994 Volume 219, Pages 186–212 (Mi znsl5992)

This article is cited in 1 paper

Smooth and convergent $\varepsilon$-approximations of the first initial boundary-value problem for the equations of Kelvin–Voight fluids

A. P. Oskolkov

St. Petersburg Department of V. A. Steklov Institute of Mathematics of the Russian Academy of Sciences

Abstract: In this paper we study the global classical solvability of the first initial boundary-value problem for the three-dimensional perturbed equations (33), (34), (38) and (39), and also we study the convergence as $\varepsilon\to0$ of solutions of all these perturbed problems to the classical solutions of the first initial boundary-value problem for the equations (1) and (2). Bibliography: 19 titles.

UDC: 517.9

Received: 01.02.1994


 English version:
Journal of Mathematical Sciences (New York), 1997, 86:4, 2926–2943

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025