RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. POMI, 2014 Volume 423, Pages 33–56 (Mi znsl5996)

This article is cited in 2 papers

Hochschild cohomology for self-injective algebras of tree class $D_n$. VI

Yu. V. Volkov

St. Petersburg State University, St. Petersburg, Russia

Abstract: For $R$-bimodule $M$ with $k$-algebra structure and a compatible action of a finite group $G\le\mathrm{Aut}R$ we define algebra $\mathrm{HH}^*(R,M)^{G\uparrow}$. We construct an isomorphism between the algebras $\mathrm{HH^*(R)}$ and $\mathrm{HH}^*(\widetilde R,\widetilde R\#kG)^{G\uparrow}$ in the terms of bar-resolutions, where $\widetilde R=R\#kG^*$. Using these results, we calculate the Hochschild cohomology algebra for a family of self-injective algebras of tree class $D_n$.

Key words and phrases: self-injective algebras, finite representation type, Hochschild cohomology, smash-product.

UDC: 512.5

Received: 13.02.2014


 English version:
Journal of Mathematical Sciences (New York), 2015, 209:4, 500–514

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025