RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. POMI, 2014 Volume 424, Pages 5–32 (Mi znsl6008)

This article is cited in 1 paper

Operator Lipschitz functions in several variables and Möbius transformations

A. B. Aleksandrov

St. Petersburg Department of V. A. Steklov Institute of Mathematics of the Russian Academy of Sciences, St. Petersburg, Russia

Abstract: It is proved that if $f$ is an operator Lipschitz function defined on $\mathbb R^n$, then the function $\dfrac{f\circ\varphi}{\|\varphi'\|}$ is also operator Lipschitz for every Möbius transformations $\varphi$ with $f(\varphi(\infty))=0$. Here $\|\varphi'\|$ denotes the operator norm of the Jacobian matrix $\varphi'$.
Similar statements are obtained also for operator Lipschitz functions defined on closed subsets of $\mathbb R^n$.

Key words and phrases: operator Lipschitz functions.

UDC: 517.98

Received: 27.05.2014


 English version:
Journal of Mathematical Sciences (New York), 2015, 209:5, 665–682

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024