RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. POMI, 2004 Volume 320, Pages 160–165 (Mi znsl604)

Estimation in a model with infinite dimensional nuisance parameter

V. N. Solev, F. Haghighi

St. Petersburg Department of V. A. Steklov Institute of Mathematics, Russian Academy of Sciences

Abstract: Let $X_1$ be a random variable with density function $f(t)$, $\Psi(t)$ be an increasing absolutely continuous function, $\Phi(t)$ be the inverse function, random variable $X_2$ be defined by $X_2=\Phi(X_1)$. We consider the maximum likelihood estimator for density $\psi$ of function $\Psi$ as we observe two independent samples from the distribution of $X_1$ and $X_2$. Under appropriate conditions on the involved distributions, we prove the consistency of maximum likelihood estimator.

UDC: 519.21

Received: 24.12.2004


 English version:
Journal of Mathematical Sciences (New York), 2006, 137:1, 4567–4570

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024