RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. POMI, 2014 Volume 429, Pages 11–19 (Mi znsl6063)

This article is cited in 1 paper

Salem's problem for the inverse Minkowski $?(t)$ function

E. P. Golubeva

St. Petersburg State University of Telecommunications, St. Petersburg, Russia

Abstract: Let $d_n$ be the coefficient Fourier–Stieltjes of the Minkowski $?(t)$ function –
$$ d_n=\int^1_0\cos2\pi nt\,d?(t). $$
Salem's problem is as to whether $d_n$ tends to zero as $n\to\infty$.
In the paper the coefficient Fourier
$$ \alpha_n=\int^1_0\cos(2\pi n?(t))\,dt $$
is considered. It is proved that $\alpha_n$ does not tend to zero as $n\to\infty$.

Key words and phrases: Minkowski function, Farey tree, Salem's problem.

UDC: 519

Received: 18.09.2014


 English version:
Journal of Mathematical Sciences (New York), 2015, 207:6, 808–814

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024