RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. POMI, 2014 Volume 429, Pages 44–54 (Mi znsl6066)

This article is cited in 3 papers

Inequalities for moduli of the circumferentially mean $p$-valent functions

V. N. Dubininab

a Institute of Applied Mathematics, Far-Eastern Branch of the Russian Academy of Sciences, Vladivostok, Russia
b Far Eastern Federal University, Vladivostok, Russia

Abstract: Let $f$ be a circumferentially mean $p$-valent function in the disk $|z|<1$ with Montel's normalization: $f(0)=0$, $f(\omega)=\omega$ $(0<\omega<1)$. Under an additional constraint on the covering of the concentric circles by $f$, precise lower and upper bounds of modulus $|f(z)|$ for some $z\in(-1,0)$ are established. The necessity of such constraint for the non-trivial estimates to be true is shown.

Key words and phrases: holomorphic function, $p$-valent function, Chebyshev polynomial, symmetrization, circumferentially mean $p$-valent function.

UDC: 517.54

Received: 01.08.2014


 English version:
Journal of Mathematical Sciences (New York), 2015, 207:6, 832–838

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024