This article is cited in
2 papers
On the Dedekind zeta function. II
O. M. Fomenko St. Petersburg Department of V. A. Steklov Institute of Mathematics of the Russian Academy of Sciences, St. Petersburg, Russia
Abstract:
Let
$K_n$ be a number field of degree
$n$ over
$\mathbb Q$. Denote by
$A(x,K_n)$ the number of integer ideals of
$K_n$ with norm
$\leq x$. For
$K_8=\mathbb Q(\sqrt{-1},\root4\of m)$,
$K_8=\mathbb Q(\root4\of{\varepsilon_m})$ and $K_{16}=\mathbb Q(\sqrt{-1},\root4\of{\varepsilon_m})$, where
$m$ is a positive square free integer and
$\varepsilon_m$ denotes the fundamental unit of
$\mathbb Q(\sqrt m)$, the author proves that
$$
A(x,K_n)=\Lambda_nx+\Delta(x,K_n)(x,K_n),\quad\Delta(x,K_n)\ll x^{1-\frac3{n+2}+\varepsilon}.
$$
This improves earlier results of E. Landau (1917) and W. G. Nowak (Math. Nachr.
161 (1993), 59–74) for the indicated special cases.
The author also treats Titchmarch's phenomenon for
$\zeta_{K_n}(s)$ and large values of
$\Delta(x,K_n)$.
Key words and phrases:
Dedekind $\zeta$-function, extremal values.
UDC:
511.466+517.863
Received: 20.10.2014