RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. POMI, 2014 Volume 429, Pages 178–192 (Mi znsl6074)

This article is cited in 2 papers

On the Dedekind zeta function. II

O. M. Fomenko

St. Petersburg Department of V. A. Steklov Institute of Mathematics of the Russian Academy of Sciences, St. Petersburg, Russia

Abstract: Let $K_n$ be a number field of degree $n$ over $\mathbb Q$. Denote by $A(x,K_n)$ the number of integer ideals of $K_n$ with norm $\leq x$. For $K_8=\mathbb Q(\sqrt{-1},\root4\of m)$, $K_8=\mathbb Q(\root4\of{\varepsilon_m})$ and $K_{16}=\mathbb Q(\sqrt{-1},\root4\of{\varepsilon_m})$, where $m$ is a positive square free integer and $\varepsilon_m$ denotes the fundamental unit of $\mathbb Q(\sqrt m)$, the author proves that
$$ A(x,K_n)=\Lambda_nx+\Delta(x,K_n)(x,K_n),\quad\Delta(x,K_n)\ll x^{1-\frac3{n+2}+\varepsilon}. $$
This improves earlier results of E. Landau (1917) and W. G. Nowak (Math. Nachr. 161 (1993), 59–74) for the indicated special cases.
The author also treats Titchmarch's phenomenon for $\zeta_{K_n}(s)$ and large values of $\Delta(x,K_n)$.

Key words and phrases: Dedekind $\zeta$-function, extremal values.

UDC: 511.466+517.863

Received: 20.10.2014


 English version:
Journal of Mathematical Sciences (New York), 2015, 207:6, 923–933

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024