RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. POMI, 2014 Volume 430, Pages 18–31 (Mi znsl6080)

On the Jordan block structure of a product of long and short root elements in irreducible representations of algebraic groups of type $B_r$

T. S. Busel

Institute of Mathematics of the National Academy of Sciences of Belarus, Minsk, Belarus

Abstract: The behaviour of a product of commuting long and short root elements of the group of type $B_r$ in $p$-restricted irreducible representations is investigated. For such representations with certain local properties of highest weights it is shown that the images of these elements have Jordan blocks of all a priori possible sizes. For a $p$-restricted representation with highest weight $a_1\omega_1+\dots+a_r\omega_r$ this fact is proved when $a_j\neq p-1$ for some $j<r-1$ and one of the following holds:
1) $a_r\neq p-1$ and $\sum_{i=1}^{r-2}a_i\geq p-1$;
2) $2a_{r-1}+a_r<p$, $\sum_{i=1}^{r-3}a_i\neq0$ for $2a_{r-1}+a_r=p-2$ or $p-1$ and $\sum_{i=1}^{r-3}a_i\neq0$ or $(r-3)(p-1)$ for $a_r=p-1$.

Key words and phrases: representations of algebraic groups, unipotent elements, block structure.

UDC: 512.554.32

Received: 25.09.2014


 English version:
Journal of Mathematical Sciences (New York), 2016, 219:3, 346–354

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024