RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. POMI, 2014 Volume 430, Pages 53–60 (Mi znsl6082)

This article is cited in 3 papers

Explicit form of Hilbert symbol for polynomial formal groups over multidimensional local field. I

S. V. Vostokov, V. V. Volkov, M. V. Bondarko

St. Petersburg State University, St. Petersburg, Russia

Abstract: Let $K$ be a multidimensional local field with characteristic different from characteristic of its residue field, $c$ be a unit of $K$ and $F_c(X,Y)=X+Y+cXY$ be a polynomial formal group, which defines formal module $F_c(\mathfrak M)$ over maximal ideal of ring of integers in $K$. Assume that $K$ contains group of the roots of isogeny $[p^m]_c(X)$, which we denote by $\mu_{F_c,m}$. Let $\mathcal H$ be the multiplicative group of Cartier curves and $\mathcal H_c$ be a formal analogue of the module $F_c(\mathfrak M)$. In the current work we construct formal symbol $\{\cdot,\cdot\}_c\colon K_n(\mathcal H)\times\mathcal H_c\to\mu_{F_c,m}$ and check its basic properties. This is the first step in construction of the explicit formula for the Hilbert symbol.

Key words and phrases: Hilbert symbol, multidimensional local field, formal groups, polynomial formal groups.

UDC: 512.741

Received: 30.09.2014


 English version:
Journal of Mathematical Sciences (New York), 2016, 219:3, 370–374

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024