RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. POMI, 2014 Volume 430, Pages 61–66 (Mi znsl6083)

This article is cited in 5 papers

Lubin–Tate formal module in a cyclic unramified $p$-extension as Galois module

S. V. Vostokova, I. I. Nekrasov

a St. Petersburg State University, St. Petersburg, Russia

Abstract: In this paper we describe the structure of the $\mathcal O_K[G]$-module $F(\mathfrak m_M)$, where $M/L$, $L/K$, $K/\mathbb Q_p$ are finite Galois extensions ($p$ is fixed prime number), $G=\mathrm{Gal}(M/L)$, $\mathfrak m_M$ is a maximal ideal of $M$ and $F$ is a formal Lubin–Tate group law over $\mathcal O_K$ for a prime element $\pi$.

Key words and phrases: Lubin–Tate formal module, Galoise module, local field.

UDC: 512.741

Received: 23.09.2014


 English version:
Journal of Mathematical Sciences (New York), 2016, 219:3, 375–379

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024