RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. POMI, 2014 Volume 430, Pages 103–113 (Mi znsl6086)

Intersection and incidence distances between parabolic subgroups of a reductive group

N. Gordeeva, U. Rehmannb

a Department of Mathematics, Russian State Pedagogical University, Moijka 48, St. Petersburg 191186, Russia
b Department of Mathematics, Bielefeled University, Universitätsstrasse 25, D-33615 Bielefeld, Germany

Abstract: Let $\Gamma$ be a reductive algebraic group and let $P,Q\subset\Gamma$ be a pair of parabolic subgroups. We consider here some properties of intersection and incident distances
\begin{gather*} d_\mathrm{in}(P,Q)=\max\{\dim P,\dim Q\}-\dim (P\cap Q),\\ d_\mathrm{inc}(P,Q)=\min\{\dim P,\dim Q\}-\dim (P\cap Q) \end{gather*}
(if $P,Q$ are Borel subgroups, both numbers coincide with the Tits distance $\operatorname{dist}(P,Q)$ in the building $\Delta(\Gamma)$ of all parabolic subgroups of $\Gamma$). In particular, if $\Gamma=\mathrm{GL}(V)$ and $P=P_v$, $Q=P_u$ are stabilizers in $\mathrm{GL}(V)$ of linear subspaces $v,u\subset V$ we obtain the formula
$$ d_\mathrm{in}(P,Q)=-d^{\,2}+a_1d+a_2 $$
where $d=d_\mathrm{in}(v,u)=\max\{\dim v,\dim u\}-\dim(v\cap u)$ is the intersection distance between the subspaces $v,u$, and where $a_1, a_2$ are integers expressed in terms of $\dim V,\dim v,\dim u$.

Key words and phrases: parabolic subgroups, Tits distance, Schubert cells.

UDC: 512.743

Received: 23.09.2014

Language: English


 English version:
Journal of Mathematical Sciences (New York), 2016, 219:3, 405–412

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024